Monday 29 May 2017

Moving Average Exponential Decay


Média Móvel Exponencial - EMA BREAKING DOWN Média Móvel Exponencial - EMA As EMAs de 12 e 26 dias são as médias de curto prazo mais populares e são usadas para criar indicadores como a divergência de convergência média móvel (MACD) eo oscilador de preço percentual (PPO). Em geral, as EMA de 50 e 200 dias são usadas como sinais de tendências de longo prazo. Traders que empregam análise técnica encontrar médias móveis muito útil e perspicaz quando aplicado corretamente, mas criar havoc quando usado de forma inadequada ou são mal interpretados. Todas as médias móveis normalmente utilizadas na análise técnica são, pela sua própria natureza, indicadores atrasados. Conseqüentemente, as conclusões tiradas da aplicação de uma média móvel a um gráfico de mercado específico devem ser para confirmar um movimento de mercado ou para indicar sua força. Muitas vezes, quando uma linha de indicadores de média móvel fez uma alteração para refletir uma mudança significativa no mercado, o ponto ótimo de entrada no mercado já passou. Um EMA serve para aliviar este dilema em certa medida. Porque o cálculo EMA coloca mais peso sobre os dados mais recentes, ele abraça a ação de preço um pouco mais apertado e, portanto, reage mais rápido. Isto é desejável quando um EMA é usado para derivar um sinal de entrada de negociação. Interpretando a EMA Como todos os indicadores de média móvel, eles são muito mais adequados para mercados de tendências. Quando o mercado está em uma tendência de alta forte e sustentada. A linha de indicador EMA também mostrará uma tendência de alta e vice-versa para uma tendência de baixa. Um comerciante vigilante não só prestar atenção à direção da linha EMA, mas também a relação da taxa de mudança de uma barra para a próxima. Por exemplo, à medida que a ação de preço de uma forte tendência de alta começar a se nivelar e reverter, a taxa de mudança da EMA de uma barra para a próxima começará a diminuir até que a linha de indicador se aplana ea taxa de mudança seja zero. Devido ao efeito retardado, por este ponto, ou mesmo algumas barras antes, a ação do preço deve já ter invertido. Portanto, segue-se que a observação de uma diminuição consistente da taxa de variação da EMA poderia ser utilizada como um indicador que pudesse contrariar o dilema causado pelo efeito retardado das médias móveis. Usos comuns do EMA EMAs são comumente usados ​​em conjunto com outros indicadores para confirmar movimentos significativos do mercado e para avaliar a sua validade. Para os comerciantes que negociam intraday e mercados em rápido movimento, o EMA é mais aplicável. Muitas vezes os comerciantes usam EMAs para determinar um viés de negociação. Por exemplo, se um EMA em um gráfico diário mostra uma forte tendência ascendente, uma estratégia de comerciantes intraday pode ser a negociação apenas a partir do lado longo em um gráfico intraday. Exploring A Volatilidade Média Móvel Ponderada Exponencialmente é a medida mais comum de risco, mas Ele vem em vários sabores. Em um artigo anterior, mostramos como calcular a volatilidade histórica simples. (Para ler este artigo, consulte Usando a volatilidade para medir o risco futuro.) Usamos os dados reais do estoque do Google para computar a volatilidade diária com base em 30 dias de dados de estoque. Neste artigo, melhoraremos a volatilidade simples e discutiremos a média móvel exponencialmente ponderada (EWMA). Histórico vs. Volatilidade implícita Primeiro, vamos colocar esta métrica em um pouco de perspectiva. Há duas abordagens gerais: volatilidade histórica e implícita (ou implícita). A abordagem histórica pressupõe que o passado é um prólogo que medimos a história na esperança de que ela seja preditiva. A volatilidade implícita, por outro lado, ignora a história que resolve pela volatilidade implícita nos preços de mercado. Espera que o mercado conheça melhor e que o preço de mercado contenha, mesmo que implicitamente, uma estimativa consensual da volatilidade. Se focarmos apenas as três abordagens históricas (à esquerda acima), elas têm duas etapas em comum: Calcular a série de retornos periódicos Aplicar um esquema de ponderação Primeiro, nós Calcular o retorno periódico. Isso é tipicamente uma série de retornos diários onde cada retorno é expresso em termos continuamente compostos. Para cada dia, tomamos o log natural da razão dos preços das ações (ou seja, preço hoje dividido pelo preço de ontem, e assim por diante). Isso produz uma série de retornos diários, de u i para u i-m. Dependendo de quantos dias (m dias) estamos medindo. Isso nos leva ao segundo passo: é aqui que as três abordagens diferem. No artigo anterior (Usando a Volatilidade para Avaliar o Risco Futuro), mostramos que, sob algumas simplificações aceitáveis, a variância simples é a média dos retornos quadrados: Note que isto soma cada um dos retornos periódicos e depois divide esse total pela Número de dias ou observações (m). Então, é realmente apenas uma média dos retornos periódicos quadrados. Dito de outra forma, cada retorno ao quadrado é dado um peso igual. Portanto, se alfa (a) é um fator de ponderação (especificamente, um 1m), então uma variância simples é algo como isto: O EWMA Melhora na Variância Simples A fraqueza desta abordagem é que todos os retornos ganham o mesmo peso. O retorno de ontem (muito recente) não tem mais influência na variância do que nos últimos meses. Esse problema é corrigido usando-se a média móvel exponencialmente ponderada (EWMA), na qual retornos mais recentes têm maior peso na variância. A média móvel exponencialmente ponderada (EWMA) introduz lambda. Que é chamado de parâmetro de suavização. Lambda deve ser inferior a um. Sob essa condição, em vez de pesos iguais, cada retorno ao quadrado é ponderado por um multiplicador da seguinte forma: Por exemplo, RiskMetrics TM, uma empresa de gestão de risco financeiro, tende a usar um lambda de 0,94 ou 94. Neste caso, o primeiro Mais recente) é ponderado por (1-0.94) (. 94) 0 6. O próximo retomo ao quadrado é simplesmente um lambda-múltiplo do peso anterior neste caso 6 multiplicado por 94 5.64. E o terceiro dia anterior peso é igual a (1-0,94) (0,94) 2 5,30. Esse é o significado de exponencial em EWMA: cada peso é um multiplicador constante (isto é, lambda, que deve ser menor que um) do peso dos dias anteriores. Isso garante uma variância que é ponderada ou tendenciosa em direção a dados mais recentes. (Para saber mais, consulte a Planilha do Excel para a Volatilidade do Google.) A diferença entre simplesmente volatilidade e EWMA para o Google é mostrada abaixo. A volatilidade simples pesa efetivamente cada retorno periódico em 0.196, como mostrado na coluna O (tivemos dois anos de dados diários sobre os preços das ações, ou seja, 509 retornos diários e 1509 0.196). Mas observe que a Coluna P atribui um peso de 6, então 5.64, então 5.3 e assim por diante. Essa é a única diferença entre a variância simples e EWMA. Lembre-se: Depois de somarmos toda a série (na coluna Q) temos a variância, que é o quadrado do desvio padrão. Se queremos a volatilidade, precisamos nos lembrar de tomar a raiz quadrada dessa variância. Sua significativa: A variância simples nos deu uma volatilidade diária de 2,4, mas a EWMA deu uma volatilidade diária de apenas 1,4 (veja a planilha para mais detalhes). Aparentemente, volatilidade Googles estabeleceu-se mais recentemente, portanto, uma variância simples pode ser artificialmente elevado. A variação de hoje é uma função da variação dos dias de Pior Você observará que nós necessitamos computar uma série longa de pesos exponencial declinando. Nós não vamos fazer a matemática aqui, mas uma das melhores características do EWMA é que a série inteira convenientemente reduz a uma fórmula recursiva: Recursivo significa que as referências de variância de hoje (ou seja, é uma função da variação de dias anteriores). Você pode encontrar esta fórmula na planilha também, e produz o mesmo resultado exato que o cálculo de longhand Diz: A variância de hoje (sob EWMA) iguala a variância de ontem (ponderada por lambda) mais o retorno ao quadrado de ontem (pesado por um lambda negativo). Observe como estamos apenas adicionando dois termos juntos: ontem variância ponderada e ontem ponderado, retorno ao quadrado. Mesmo assim, lambda é o nosso parâmetro de suavização. Um lambda mais alto (por exemplo, como o RiskMetrics 94) indica um declínio mais lento na série - em termos relativos, vamos ter mais pontos de dados na série e eles vão cair mais lentamente. Por outro lado, se reduzimos o lambda, indicamos maior decaimento: os pesos caem mais rapidamente e, como resultado direto da rápida decomposição, são usados ​​menos pontos de dados. (Na planilha, lambda é uma entrada, para que você possa experimentar com sua sensibilidade). Resumo A volatilidade é o desvio padrão instantâneo de um estoque ea métrica de risco mais comum. É também a raiz quadrada da variância. Podemos medir a variância historicamente ou implicitamente (volatilidade implícita). Ao medir historicamente, o método mais fácil é a variância simples. Mas a fraqueza com variância simples é todos os retornos obter o mesmo peso. Então, enfrentamos um trade-off clássico: sempre queremos mais dados, mas quanto mais dados tivermos, mais nosso cálculo será diluído por dados distantes (menos relevantes). A média móvel exponencialmente ponderada (EWMA) melhora a variância simples atribuindo pesos aos retornos periódicos. Ao fazer isso, podemos usar um grande tamanho de amostra, mas também dar maior peso a retornos mais recentes. (Para ver um filme tutorial sobre este tópico, visite o Bionic Turtle.) Uma medida da relação entre uma mudança na quantidade exigida de um determinado bem e uma mudança no seu preço. Preço. O valor de mercado total do dólar de todas as partes em circulação de uma companhia. A capitalização de mercado é calculada pela multiplicação. Frexit curto para quotFrancês exitquot é um spin-off francês do termo Brexit, que surgiu quando o Reino Unido votou. Uma ordem colocada com um corretor que combina as características de ordem de parada com as de uma ordem de limite. Uma ordem de stop-limite será. Uma rodada de financiamento onde os investidores comprar ações de uma empresa com uma avaliação menor do que a avaliação colocada sobre a. Uma teoria econômica da despesa total na economia e seus efeitos no produto e na inflação. A economia keynesiana foi desenvolvida. Escolhendo a melhor linha de tendência para seus dados Quando você deseja adicionar uma linha de tendência a um gráfico no Microsoft Graph, você pode escolher qualquer um dos seis diferentes tipos de regressão de tendência. O tipo de dados que você tem determina o tipo de linha de tendência que você deve usar. Confiabilidade Trendline Uma linha de tendência é mais confiável quando seu valor R-quadrado está em ou próximo de 1. Quando você ajusta uma linha de tendência para seus dados, o Graph calcula automaticamente seu valor R-quadrado. Se desejar, você pode exibir esse valor em seu gráfico. Uma linha de tendência linear é uma linha reta com melhor ajuste que é usada com conjuntos de dados lineares simples. Seus dados são lineares se o padrão em seus pontos de dados se assemelha a uma linha. Uma linha de tendência linear geralmente mostra que algo está aumentando ou diminuindo a uma taxa constante. No exemplo a seguir, uma linha de tendência linear mostra claramente que as vendas de geladeiras aumentaram consistentemente ao longo de um período de 13 anos. Observe que o valor R-quadrado é 0.9036, que é um bom ajuste da linha para os dados. Uma linha de tendência logarítmica é uma linha curva melhor ajustada que é mais útil quando a taxa de mudança nos dados aumenta ou diminui rapidamente e, em seguida, nivela para fora. Uma linha de tendência logarítmica pode usar valores negativos e / ou positivos. O exemplo a seguir usa uma linha de tendência logarítmica para ilustrar o crescimento populacional previsto de animais em uma área de espaço fixo, onde a população nivelada como espaço para os animais diminuiu. Observe que o valor R-quadrado é 0,9407, que é um ajuste relativamente bom da linha para os dados. Uma linha de tendência polinomial é uma linha curva que é usada quando os dados flutuam. É útil, por exemplo, para analisar ganhos e perdas em um grande conjunto de dados. A ordem do polinômio pode ser determinada pelo número de flutuações nos dados ou por quantas curvas (colinas e vales) aparecem na curva. Uma linha de tendência polinomial de ordem 2 geralmente tem apenas uma colina ou vale. Ordem 3 geralmente tem uma ou duas colinas ou vales. Ordem 4 geralmente tem até três. O exemplo a seguir mostra uma linha de tendência polinomial Order 2 (uma colina) para ilustrar a relação entre velocidade e consumo de gasolina. Observe que o valor R-quadrado é 0.9474, que é um bom ajuste da linha para os dados. Uma linha de tendência de energia é uma linha curva que é melhor usada com conjuntos de dados que comparam medidas que aumentam a uma taxa específica, por exemplo, a aceleração de um carro de corrida em intervalos de um segundo. Você não pode criar uma linha de tendência de energia se seus dados contiverem valores zero ou negativos. No exemplo a seguir, os dados de aceleração são mostrados traçando a distância em metros por segundos. A linha de tendência de energia demonstra claramente a crescente aceleração. Observe que o valor R-quadrado é 0.9923, que é um ajuste quase perfeito da linha para os dados. Uma linha de tendência exponencial é uma linha curva que é mais útil quando os valores de dados sobem ou caem a taxas cada vez mais altas. Você não pode criar uma linha de tendência exponencial se seus dados contiverem valores zero ou negativos. No exemplo a seguir, uma linha de tendência exponencial é usada para ilustrar a quantidade decrescente de carbono 14 em um objeto à medida que envelhece. Observe que o valor R-quadrado é 1, o que significa que a linha se encaixa perfeitamente os dados. Uma linha de tendência média móvel suaviza as flutuações nos dados para mostrar um padrão ou tendência mais claramente. Uma linha de tendência de média móvel usa um número específico de pontos de dados (definido pela opção Período), os calcula em média e usa o valor médio como um ponto na linha de tendência. Se Period for definido como 2, por exemplo, então a média dos dois primeiros pontos de dados é usada como o primeiro ponto na linha de tendência de média móvel. A média do segundo e terceiro pontos de dados é usada como o segundo ponto na linha de tendência, e assim por diante. No exemplo a seguir, uma linha de tendência de média móvel mostra um padrão no número de casas vendidas ao longo de um período de 26 semanas.

No comments:

Post a Comment